PTH modulation of NCC activity regulates TRPV5 Ca2+ reabsorption.
نویسندگان
چکیده
Since parathyroid hormone (PTH) is known to increase transient receptor potential vanilloid (TRPV)5 activity and decrease Na(+)-Cl(-) cotransporter (NCC) activity, we hypothesized that decreased NCC-mediated Na(+) reabsorption contributes to the enhanced TRPV5 Ca(2+) reabsorption seen with PTH. To test this, we used mDCT15 cells expressing functional TRPV5 and ruthenium red-sensitive (45)Ca(2+) uptake. PTH increased (45)Ca(2+) uptake to 8.8 ± 0.7 nmol·mg(-1)·min(-1) (n = 4, P < 0.01) and decreased NCC activity from 75.4 ± 2.7 to 20.3 ± 1.3 nmol·mg(-1)·min(-1) (n = 4, P < 0.01). Knockdown of Ras guanyl-releasing protein (RasGRP)1 had no baseline effect on (45)Ca(2+) uptake but significantly attenuated the response to PTH from a 45% increase (6.0 ± 0.2 to 8.7 ± 0.4 nmol·mg(-1)·min(-1)) in control cells to only 20% in knockdown cells (6.1 ± 0.1 to 7.3 ± 0.2 nmol·mg(-1)·min(-1), n = 4, P < 0.01). Inhibition of PKC and PKA resulted in further attenuation of the PTH effect. RasGRP1 knockdown decreased the magnitude of the TRPV5 response to PTH (7.9 ± 0.1 nmol·mg(-1)·min(-1) for knockdown compared with 9.1 ± 0.1 nmol·mg(-1)·min(-1) in control), and the addition of thiazide eliminated this effect (a nearly identical 9.0 ± 0.1 nmol·mg(-1)·min(-1)). This indicates that functionally active NCC is required for RasGRP1 knockdown to impact the PTH effect on TRPV5 activity. Knockdown of with no lysine kinase (WNK)4 resulted in an attenuation of the increase in PTH-mediated TRPV5 activity. TRPV5 activity increased by 36% compared with 45% in control (n = 4, P < 0.01 between PTH-treated groups). PKC blockade further attenuated the PTH effect, whereas combined PKC and PKA blockade in WNK4KD cells abolished the effect. We conclude that modulation of NCC activity contributes to the response to PTH, implying a role for hormonal modulation of NCC activity in distal Ca(2+) handling.
منابع مشابه
PTH modulation of NCC activity regulates TRPV5 Ca reabsorption
Robert S. Hoover, Viktor Tomilin, Lauren Hanson, Oleh Pochynyuk, and Benjamin Ko Division of Nephrology, Department of Medicine, Emory University, Atlanta, Georgia; Atlanta Veteran’s Administration Medical Center, Decatur, Georgia; Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas; Institute of Cytology, Russian Academy of Sciences...
متن کاملWNK4 enhances TRPV5-mediated calcium transport: potential role in hypercalciuria of familial hyperkalemic hypertension caused by gene mutation of WNK4.
The epithelial Ca(2+) channel TRPV5 serves as a gatekeeper for active Ca(2+) reabsorption in the distal convoluted tubule and connecting tubule of the kidney. WNK4, a protein serine/threonine kinase with gene mutations that cause familial hyperkalemic hypertension (FHH), including a subtype with hypercalciuria, is also localized in the distal tubule of the nephron. To understand the role of WNK...
متن کاملEnhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia.
Thiazide diuretics enhance renal Na+ excretion by blocking the Na+-Cl- cotransporter (NCC), and mutations in NCC result in Gitelman syndrome. The mechanisms underlying the accompanying hypocalciuria and hypomagnesemia remain debated. Here, we show that enhanced passive Ca2+ transport in the proximal tubule rather than active Ca2+ transport in distal convolution explains thiazide-induced hypocal...
متن کاملRecent advances in renal tubular calcium reabsorption.
PURPOSE OF REVIEW Knowledge of renal Ca2+ reabsorption has evolved greatly in recent years. This review focuses on two recent discoveries concerning passive and active Ca2+ reabsorption. RECENT FINDINGS The thiazide diuretics are known for their hypocalciuric effect. Recently, it has been demonstrated that TRPV5-knockout mice, in which active Ca2+ reabsorption in the distal convoluted tubule ...
متن کاملLifelong challenge of calcium homeostasis in male mice lacking TRPV5 leads to changes in bone and calcium metabolism
Trpv5 plays an important role in calcium (Ca2+) homeostasis, among others by mediating renal calcium reabsorption. Accordingly, Trpv5 deficiency strongly stresses Ca2+ homeostasis in order to maintain stable serum Ca2+. We addressed the impact of lifelong challenge of calcium homeostasis on the bone phenotype of these mice.Aging significantly increased serum 1,25(OH)2D3 and PTH levels in both g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 310 2 شماره
صفحات -
تاریخ انتشار 2016